
Using Runtime Verification to Design a Reliable Execution Framework for
Scientific Workflows

Luciano Piccoli†‡ Abhishek Dubey* James B. Kowalkowski† James N. Simone†

Xian-He Sun‡ Gabor Karsai*

†Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL, USA 60510
* Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN

‡Illinois Institute of Technology Chicago, IL, USA 60616

Abstract

In this paper, we describe the design of a scientific work-
flow execution framework that integrates run-time verifica-
tion to monitor its execution and checking it against the for-
mal specifications. For controlling workflow execution, this
framework provides for data provenance, execution track-
ing and online monitoring of each workflow task, also re-
ferred to as participants. The sequence of participants is
described in an abstract parameterized view, which is used
to generate concrete data dependency based sequence of
participants with defined arguments. As participants be-
longing to a workflow are mapped onto machines and ex-
ecuted, periodic and on-demand monitoring of vital health
parameters on allocated nodes is enabled according to pre-
specified safety sets with actions to be taken upon deviation
from these safe sets.

1 Introduction and Problem Motivation

Current computing power and storage capabilities al-
lied to distributed computing models allow the production
of e-science in areas such as biology, desaster simulation,
physics among others. The organization of the massive in-
formation produced is critical for its effective use in new
discoveries. Lattice Quantum Chromodynamics (LQCD),
the numerical study of QCD quantum field theory on a four-
dimensional discrete lattice, generates considerable data
that are processed at several institutions. Applications, soft-
ware libraries, input data and workflow recipes are shared
among collaborators worldwide1.

Unlike many e-science experiments that make use of

1Information about LQCD project can be obtained from
http://www.usqcd.org/

Table 1. Cluster Evaluation Metrics.

AvailabilityT2
T1 =

R T2

T1
OnlineNodes.dtR T2

T1
NodesinCluster.dt

(1)

UtilizationT2
T1 =

R T2

T1
BusyNodes.dtR T2

T1
OnlineNodes.dt

(2)

ProductivityT2
T1 =

R T2

T1
SuccessfulJobs.dtR T2

T1
BusyNodes.dt

(3)

Grid resources2 for harvesting capacity processing power,
LQCD computations employ tightly-coupled parallel pro-
cessing which requires computers with high-speed low-
latency networks. Binary codes are fine tuned to exploit
capabilities of each underlying architecture. LQCD work-
flows can effectively exploit the capacity of one or more
parallel computers by running many independent computa-
tions at once. The majority of computers used for LQCD
computations are dedicated clusters.

Clusters built out of commodity computers, used for sci-
entific computing, exhibit intermittent faults, which can re-
sult in systemic failures when operated over a long continu-
ous period for executing workflows. During its execution, a
typical workflow, can spawn several hundreds of data and
computation intensive, parallel, MPI Jobs, requiring sev-
eral processing nodes. Typically, several users analyze dif-
ferent workflows on the clusters concurrently. Diagnosing
job problems and failures in this complex environment is an
arduous task, specifically when the success of whole cam-
paign might be affected by even one job failure.

Effective usage of cluster depends upon three metrics,
availability, utilization and productivity. Table 1 summa-

2See DOE Scientific Computing on Grid initiative at
http://www.doesciencegrid.org/

rizes the three metrics.T1 andT2 are the global timestamps
specifying the duration of metric evaluation. Availability is
the ratio of number of nodes online and available vs. all
the nodes available in the cluster. Utilization is simply how
many nodes are busy at a time. Productivity is the fraction
of busy time that was spent in doing successful workflows.
To increase productivity we must identify and either miti-
gate failure in the workflow, or stop the workflow and abdi-
cate the used resources.

Productivity, of the dedicated clusters require LQCD
workflows to be closely monitored and failures quickly
recovered to avoid wasting of precious processing time.
However, the current processing model relies on simple
perl-based scripting workflow languages for driving LQCD
workflows; monitoring is not integrated with the workflow
execution; and fault recovery is responsibility of the user
running the experiment, i.e. understand failures from log
files and restart processing from a known working state.

In typical e-science workflows the Grid is used as the
main source for job processing, and close remote applica-
tion monitoring is limited. On the other hand, it has the
advantage of replicating the same job on different sites for
fault tolerance purposes. This flexibility is inexistent in
the dedicated LQCD processing environment. As much
productivity as possible must be extracted from the avail-
able hardware. The current user-made workflow tools focus
solely on the execution of jobs based on data dependencies.
When a job fails there is no mechanism to quickly identify
the problem, act on it and resume the execution when pos-
sible.

The sole addition of a monitoring and reliability frame-
work as an add-on does not suffice to properly add failure
feedback and recovery action to the current workflow ex-
ecution model. A proper solution is to have both systems
integrated from the design specification.

In this paper, we propose a framework for executing sci-
entific workflows with integrated reliability features. Dur-
ing the workflow specification each job (participant) has its
execution conditions and associated actions identified. At
execution time the workflow system interacts with the mon-
itoring system in order to have conditions periodically veri-
fied and receive notifications if conditions are violated.

2 Formal Foundations

2.1 Preliminaries: Model of Time

Since clusters are a distributed system, we need to as-
sume the notion of a global synchronous timeT that is con-
tinuous, monotonically increasing and dense in the set of ra-
tional numbersQ. We use rationals rather than real numbers
because they correspond to practically measurable time in-
tervals. Also, any measurement obtain through a computer

clock has fixed precision and is bound to be in set of rational
numbers.

All model values and all measurements are defined with
respect to this global time. It is implemented on all cluster
computers using a synchronization protocol such as NTP.

Classically, the timed automaton (TA) model [2, 8] has
been used for abstracting time-based behaviors of systems
which are influenced by time. A timed automaton consists
of a finite set of states calledlocationsand a finite set of
real-valued clocks. It is assumed that time passes at a uni-
form rate for each clock in the automaton. Transitions be-
tween locations are triggered by the satisfaction of associ-
ated clock constraints known asguards. During a transi-
tion, a clock is allowed to be reset to zero. These transi-
tions are assumed instantaneous. At any time, the value of
each clock is equal to the time passed since the last reset of
that clock. In order to make the timed automaton urgent,
locations are also associated with clock constraints called
invariants, which must be satisfied for a timed automaton
to remain inside a location. If there is no enabled transi-
tion out of a location whose invariant has been violated, the
timed automaton is said to beblocked. For brevity, we will
not reproduce the formal definition of a TA. However, read-
ers are encouraged to refer to [2] for a formal definition.

2.2 Resources

Generic workflow management problem is defined over
a set of “Deployment Resources”. Deployment resources
can be further divided in tocomputation and communi-
cation resources. In this discussion, we will ignore com-
munication resources and focus entirely on computation re-
sources. Computation attributes correspond to hardware
facilities required to execute computation tasks, includ-
ing processing speed (number of instructions per second),
memory size (amount of random access memory required),
etc.

Formally, deployment resources are defined as a struc-
tureR = (AC), referred to as resource domain, consisting
of a setAC of computation resource attributes. A resource
r ∈ R is defined as a tupler = (n, d, u), wheren is the
name,d is the valid range of values,u is the measurement
unit. For example, (‘cpuspeed, [0,4], GHz)∈ AC

2.3 Computation Nodes N

Scientific workflows are executed and managed over a
set of computation nodes that provide the resourcesR men-
tioned in previous section. This resource configuration
RCR, defined with respect to the computation domainR
is a structureRCR = (N,E, φ), where

• N is the set of available physical computing machines.

• E ⊆ P×P is a set of communication links connecting
computation machines.

• φ : N × R → < is a resource capacity level map,
whereφ(n, r) is the level of resourcer in the noden.

2.4 Participants Pt

Each computation task is defined as a participantPt in
the system. A scientific computation task takes in a number
of parameters from the set of input parametersI, and gen-
erates a number of output products from the set of output
productsO: Pt : 2I → 2O. Here2I represents a power set
of parameters.

All participants are classified in categories called par-
ticipant types. We denote the set of participant types by
PT . The idea is the participant type is class of algorithms
used for achieving the same output using same inputs. E.g.
numerical integration is a ”participant type”, of which the
Gauss algorithm or the Simpson’s rule algorithm are partic-
ipants. Therefore, allPt ∈ PT are algorithms that generate
same kind of product but with different quality parameters.
Usually, choosing one participant belonging to a type over
another is an optimization problem that considers all the
quality properties of all participants. However, discussion
about quality parameters is out of scope of this paper.

For every participant, we denote by a mapψ : Pt×R→
< the minimum required resources to run the participant on
one node. For exampleψ(Pt,

′ RAM′) = 512 means that
the algorithm implemented by participantPt cannot run if
the available RAM is less than 512 MB.

A participant is generally a legacy application invoked
from within a scripting language program. In LQCD work-
flows a participant is a parallel application requiring mul-
tiple computation nodes. The relationship between partici-
pants is defined by a workflowW .

2.5 Workflows W

From the point of view of the workflow participants
are atomic executable tasks related to each other by con-
trol and data dependencies. The workflow is defined as
W (Pts, Ips, Dpt), wherePts is the set of participants,Ips

is the set of user input parameters andDpt ⊆ Pts × Pts

defines a set of dependencies between the participants.
In scientific workflows data dependencies usually drive

the execution whereas in business workflows the control de-
pendencies describe the processing steps. A pictorial exam-
ple of a workflow is show in Fig. 1, wherePt is represented
by a circle of different shades for distinct participants, ar-
rows define the data dependenciesDps, which added to in-
put parameter sets define a workflowW .

The task of running a workflowW is carried out by an
”execution engine”We. The input toWe is a workflow

Figure 1. Sample workflow definition

and input parameters sets (fig. 1) described in a workflow
language format. Currently there is no agreed standard for
scientific workflow languages. Several groups have devel-
oped languages, such as SwiftScript [12] and AGWL [7],
that are specific for their partner execution engine. The ex-
ecution engineWe is responsible for tracking the run time
dependenciesDps and enable participants as dependencies
are met and input data are available.

2.6 Task Allocation Map

Given a participantPt and the set of computation nodes
N , the task allocation mapθ : Pt → 2N allocate a num-
ber of nodes to a participant. The task allocation map is
computed with respected to a scheduling policy. This is an
active area of research. In this paper, we assume the exis-
tence of such a policy. In our clusters we use PBS/Torque
for imposing the scheduling policy3.

Note that a valid task allocation mapθ has to satisfy the
following:

ResourcesNodes allocated to a participantPt must have
the minimum amount of resources required.

(∀r ∈ R)(∀n ∈ θ(Pt))(φ(n, r) ≥ ψ(Pt, r))

2.7 Sensors and Filters

A sensor program is used to monitor the current utiliza-
tion of computation resources associated with a node. It is
a mapS : N ×R × T → <. It provides a measurement of
current value with the current timestamp for the resource.
For all resources, sensor scripts produce normalized value.
Therefore, the actual value in terms of measurements unit
of the resource can be attained byS(n, r) ∗ φ(n, r). The
timing of a sensor program can be periodic or a periodic.
Executing distributed sensors in a computing cluster pose
interesting challenges such as jitter and synchronization. A
detailed discussion about these can be found in [5].

A Sensor program is always used with a filter. As
the name suggests, a filter, evaluates the measurement by

3http://www.clusterresources.com/pages/products/torque-resource-
manager.php

the sensor against the filter criteria. This is required to
reduce the network traffic due to sensor reports. Out-
puts of a filter are events. Events are a tupleE =
(Type, T imestamp, V alue). A type is a unique combina-
tion of the computation node and resource. For example the
event generated for sensorS(n, r) will have a type written
asn.r. Timestamp is the time of measurement and Value is
the actual measure

Heartbeat: For computing nodes, a specialized sensor
called heartbeat timers [5] act as watchdogs and informs
whether a computing node is online or not. A Heartbeat
Sensor is in fact a combination of a period sensor on the
concerned computing node and a filter on a monitoring
node. Overall this combination generates events with two
possible values{0, 1}, where0 means the node is offline
and1 means the node is online. We denote heartbeat sensor
asH : P × T → {0, 1}. Liveness condition for a node
named pion1 implies thatH(pion1, t) = 1, wheret is the
current time.

2.8 Events and Conditions

Timed Traces of Events: Output of a sensor and filter
combination are timed traces of events, which are sequences
of the form< a1, t1 >,< a2, t2 >, · · · , < an, tn >, where
a1, · · · , an are events andt1, · · · tn ∈ Q are the times at
which those events have occurred.

Since events are a tuple and can carry measure value of
resources, we can use a zero order hold digital to analog
converted algorithm to create an interval-Timed Trace that
provides the value corresponding to the event type for any
time. These can then be used to evaluate conditions us-
ing predicates≤, <,>,≥ over the current level of resource
consumption. More details are discussed in section 2.9

Interval Timed Trace : An interval
timed trace is a timed trace of the form
τ1a1.value, τ2a2.value, · · · , τnan.value, τn+1 where
τi is an interval[tmin, tmax] ⊆ Q, ai.value is the measure-
ment value contained in the eventai. There is one interval
timed trace for each type of an event. And there is a type
of event for each specific sensor monitoring a specific
computing resource on a computing node. We maintain
these entity relationships by using a configuration database.

Query Operator: For an interval time trace we specify
a query operatorquery : Q× Type→ < that provides the
measurement value at that time. Notice that effectively, the
event, an interval timed trace are the discretization of the
measurement value provided by the sensor. This discretiza-
tion is required to reduce the reported traffic due to a sensor.

2.9 Runtime Checkable Properties

The underlying foundation of specifying safe operation
sets for workflows is a logic based on events and condi-
tions. Events occur instantaneously during execution of sys-
tem. Conditions represent state of systems over a duration
of global time. Primitive conditions are defined with respect
to a measure provided by a sensor. Primitive events are de-
fined with respect to start and end of primitive conditions
and specialized actions such as start of a workflow task.

Properties that can be tested for a participant are speci-
fied over timed traces of events and interval timed traces of
conditions. The set of all properties is denoted asP We di-
vide the set of properties that can specified in to two groups:

Untimed Untimed properties are instantaneous properties
defined as a predicate over current value of resource
type as specified by its interval timed trace. Formally,
given an interval timed trace, the untimed properties
are defined asP ::= p|!p|P ∧ P |P ∨ P , wherep is
a primitive property defined using query operator de-
scribed in previous section, a real number and the pred-
icates≤, <,>,≥.

Timed Timed properties are defined using timed computa-
tion tree logic (TCTL) [9] and references therein.

• Reachability: These sets of properties deal with
the possible satisfaction of a given untimed prop-
erty a in a possible future state of the system. For
example, the TCTL formulaE3φ is true if the
predicate logic formulaφ ∈ P is eventually sat-
isfied on any execution path of the system.

• Invariance: These sets of properties are also
termed as safety properties. As the name sug-
gests, invariance properties are supposed to be
either true or false throughout the execution life-
time of the system. For example, the TCTL for-
mulaA2φ is true if the system always satisfies
the predicate logic formulaφ ∈ P . A restrictive
form of invariance property is sometimes used to
check if some logical formula is always true on
some execution path of the system. An example
of such a TCTL property isE2φ. We use the in-
variance propertyA2φ to describe the safe set of
operation for a participant.

• Liveness: Liveness of a system means that it will
never deadlock, i.e. in all the states of the system
either there will be an enabled transition and/or
time will be allowed to pass without violating any
location invariants. Liveness is also related to the
system responsiveness. For example, the TCTL
formulaA2(ψ → A3φ) is true if a state of the

system satisfyingψ ∈ P always eventually leads
to a state satisfyingφ ∈ P .

In the current state of the framework we only support un-
timed properties and invariance properties. They are spec-
ified for all participants as preconditions, invariant condi-
tions and postconditions. We discuss this in detail in a later
section.

Monitors: Checking for Satisfaction of a Property:
Given a propertyφ ∈ P, we construct a timed automaton
representation. We call this a model of the property. For
all such models a universal statefault is used to represent
the state that the property has been violated. The satis-
faction condition is then a dual of acceptance of a given
timed/interval trace by this model. This can be achieved
by specifying a simulator of timed automaton. The mod-
ule in the framework that performs this check is called a
Reflex Engine[4]. We call the class of reflex engine used
to identify the faults which are induced due to violation of
propertiesMonitors .

Example: dCache [3] is well known and respected as a
powerful distributed storage resource manager. It provides a
single rooted view of the file system to any actor that wants
to access or store a file. In the basic configuration, an actor
such as a participant sends the request to access a file to the
manager of the pools. The manager sends the participant the
information about the actual node where the file is stored on
and the absolute path to the file. In our clusters, we have
seen that sometimes the pool manager dies i.e. it does not
respond to a request. In such a case a participant that is
scheduled to execute cannot run. To improve productivity
we specify a precondition that the pool manager is alive to
all participants.

Let pm ∈ N be the pool manager. Then we specify
the propertyH(pm, t) > 0, t ∈ Q is the time at which the
property is evaluated. Note that this property is untimed and
is always evaluated instantaneously.

3 Distributed Monitoring and Mitigation
Framework

Before describing the overview of cluster-wide frame-
work let us explore the architecture of monitoring, diag-
nosing and mitigation framework running on a computation
node.

3.1 Reflex Engine architecture on a com-
putation Node

Recall that the key monitoring timed traces and event
traces are generated by sensor and filter programs work-
ing together. In our previous work we had presented a dis-
tributed monitoring framework used in our clusters [5]. In

Figure 2. A computing node in the real time
reflex and healing framework.

the same paper, we had also described a scheduling algo-
rithm used to execute the sensors on all computing nodes.

Along with the sensors all computation nodes also con-
tains two real-time reflex engine modules. A real-time re-
flex engine contains one or more timed state machines that
can accept a timed event trace and/or an interval timed trace.
We divide all possible reflex engines into two sets, monitors
and mitigators. Note that this is only a logical classification.
Both of them have the same semantics. Refer to [4] for a de-
tailed semantic discussion.

Fig. 2 describes the basic structure inside a managed
node. The lowest layer is the hardware. Above it we have
the operating system, which schedules all the user space and
kernel space tasks. In the user space, we have the reflex en-
gine module. One reflex engine module on a computing
node is called manager. A reflex engine module is com-
posed of three distinct user level processes. The first is the
process that executes all the sensor and filters periodically
to generate events. Second process is a reflex engine clas-
sified as monitor. It has several monitors that can consume
some of the events received in its buffer. The event-based
scheduler maintains a lookup table for the event-type and
the monitor that can use the event. Once an event comes
in the event is forwarded by the scheduler to the appropri-
ate monitor. The timer is used by the monitor to measure
the interval of time to check if a given interval timed trace
violates the monitored property. All monitors execute on
their own thread and maintain their state during execution.
Upon reaching a faulty state they generate an event which
is again a tuple with a type, timestamp and, if applicable,
the last measured value that caused the violation. The miti-
gation reflex engine works similarly but the state machines
are mitigation strategies which cause various set of actions
upon occurrence of a certain type of fault event. Semantics
of mitigation strategies are discussed in [4].

Figure 3. Hierarchical reflex engines

3.2 Distribution: Hierarchy of Managers

The run-time portion of the framework is distributed
across the system. Each cluster computing node runs an
agent called “manager” (Fig. 2). These managers are an
instance of a reflex engine and oversee the sensors and ac-
tuators scripts needed to monitor and actuate or mitigate.
These scripts are downloaded on the particular node based
on the specification provided in the modeling environment.
The actuator scripts present in a manager are executed based
on various fault mitigation strategies downloaded on that
node.

To reduce complexity, the managers are divided into re-
gions based on their racks (fig 3). Each region is managed
by a head node that is identified as theregional manager.
This manager relays the sensor information for the comput-
ing nodes under its supervision to the database. It is also
responsible for the general health of nodes running under
its supervision. For that purpose, it keeps a running moving
average of critical parameters such as CPU utilization, and
CPU temperature, for the nodes under its supervision.Local
Managersrun on all worker nodes to monitor and mitigate
the behaviors internal to that node.

Centralized Control: The centralized controller over-
sees the reported events generated across the cluster. It in-
tegrates with the workflow framework and report violations
of conditions/events that might trigger a workflow failure.
It also contains and an inference engine to infer the current
system health.

4 Workflow Framework

In order to coordinate the computation of a large num-
ber of applications (participantsPt), physicics describe the
work to be performed in a generic recipe called parame-
terized workflow. Typically the parameterized workflows
are of two classes: creation of configuration gauge ensem-
bles and process of ensembles in analysis campaigns. The
parameterized workflow in conjuction with a set of input
parameters yields a concrete workflow. Example of input
parameters are values for particle masses.

Management of input parameters is one of the require-
ments outlined for LQCD workflows [11]. In order to pro-
vide an integrated workflow and reliability environment we
developed a provenance framework for managing workflow
input physics parameters, maintain participants and work-
flow types and their respective run time information, track
generated products and related properties. The framework
structure is described in more details in the following sec-
tion.

4.1 Data Model

We use an object-oriented model for describing the
provenance classes and their relationships. Groups of
classes are implicitly divided into three spaces: parameter,
data provenance, and process execution spaces. The spaces
do not define a hard boundary between sets of classes, but
rather a logical and functional aggregation.

The parameter space archives all parameters used as in-
put for workflows, including physics parameters (e.g. parti-
cle masses), algorithmic parameters (e.g. convergence crite-
ria) and execution parameters (e.g. number of nodes used).
Parameters are name-value pairs that can be grouped in sets.
Groups of parameters are used to describe the physics prop-
erties of ensembles or hold analysis campaign attributes.
Parameter sets are optionally identified by names.

The relationship between input and output products is
kept within the data provenance space. Data products are
modeled asProducts, which have optionalProductProp-
erties. An example of product generated from a configura-
tion generation workflow is the ensemble configuration file
namedl612f21b6600m0290m0484.6. Its parent configura-
tion file is the product namedl612f21b6600m0290m0484.3
and childl612f21b6600m0290m0484.9. For more complex
analysis campaign workflows it is possible to have multiple
parent-children relationships. The products also have a ref-
erence to the workflow participant instance that generated
it, allowing the file to be reproduced by reconstructing the
processing steps.

The process execution space holds information regard-
ing workflows and participants. Each generic class of par-
ticipant is defined as aParticipantType (e.g. numerical
integration). An actual implementation of a Participant-
Type is realized by aParticipant (e.g. Gauss algorithm
version 2). The Participant holds information about the bi-
nary code, including command line format, description of
input and output parameters, and pre and post run scripts.
When a new participant is added the associated conditions
are specified, for example the executing node must be avail-
able throughout the execution:H(n, t) > 0. The actual
execution of a Participant is recorded as aParticipantIn-
stance(e.g. Gauss algorithm version 2 ran successfully on
node A producing file X).

Figure 4. Transformation from parameterized
to concrete workflow

Similarly, for managing workflows theWorkflowType
defines a class of workflow (e.g. two point analysis). The
ParameterizedWorkflow class contains the definition of
parameterized workflows, which after beign expanded into
a concrete workflow is kept asConcreteWorkflow. Dur-
ing execution aConcreteWorkflowInstance is generated,
with references to ParticipantInstances. The analysis of the
process execution space in conjunction with the data prove-
nance space allows the recreation of complete execution
traces of workflows. The concrete workflows are executed
by a simple workflow engine as described in the following
section.

4.2 Generation of Concrete Workflows

A parameterized workflow is a template that defines a
range of values for each parameter to be processed in the
workflow. For a given input parameter set a parameterized
workflow generates multiple concrete workflows.

Each participants within the generated concrete work-
flows contain the set of pre, post and invariant conditions
as specified in the data model. Conditions must be and re-
main true during the execution of the participant. These
conditions induce a failure propagation graph, which is a
tree with failure conditions as roots and the participant that
fails as the leaf. This failure propagation graph can be used
for diagnosing root causes of failure in presence of discrep-
ancies that are condition violation events. It is similar to
the timed fault propagation graph. They are causal models
that capture the temporal aspects of failure propagation in
dynamic systems [1].

A number of measures require the exact node identifier,
these set of conditions need to be templatized over the set of
nodes that are allocated to the participant. For that purpose
we use the special functionALL(H(θ(Pt)), t) > 0. The
ALL identifier is replaced by concatenated conditions when

actual task allocation map is computed for a participant.
We use Generic Modeling Environment to model a pa-

rameterized workflow. A concrete workflow is generated
by replicating a given participant and reevaluating the de-
pendency condition for all valuations of input parameters.

Fig. 4 illustrates generation of a concrete workflow for a
two-point analysis campaign. A simple configuration for a
single gauge file and the following arrays of physics param-
eters: kappa== [1 · ·4], wsrc= [1 · ·3], mass= [1 · ·2], and
d1= [1 · ·2].

In the example, the HQ participant is expanded into 12
instances according to the number of kappa and wsrc pa-
rameters (instances are grouped by kappa values). The con-
crete workflow contains a single LQ participant that gener-
ates files, which are then combined with HQ outputs by 24
instances of HL. Finally the HH participant combines HQ
outputs for a given kappa value. Outputs of HH and HL are
the final product. A production level concrete workflow for
1000 gauge configurations and default physics parameters
yields approximatelly 40K participants.

4.3 Workflow Engine

Concrete workflows generated by the Generic Model-
ing Environment derived from parameterized workflows in
conjunction with input parameter sets are submitted to the
execution engine. The concrete workflows are represented
as Direct Acyclic Graphs (DAGs)G = (V,E), where the
set of verticesV represents the set of participants gener-
ated based on the input physics parameters and the set of
directed edgesE represents the data dependencies between
participants.

This simple graph representation allows an execution en-
gine to extract full parallelism from LQCD analysis cam-
paign workflows, which is a shortcoming encountered when
modeling the same workflow using Askalon [6]. An execu-
tion engine such as DAGMan [10] with modifications suf-
fice for running concrete workflows.

While traversing the graphG the workflow engine in-
teracts with the workflow database (created from the data
model previouly described), to retrieve participant informa-
tion, record execution participant and workflow execution
information, and save data provenance.

5 Runtime Framework

The run time framework, composed by the integration of
the workflow, monitoring and mitigation frameworks is de-
picted in Fig. 5. On the left side, the workflow execution
engine schedules participants as dependencies are met. The
remaining components on the right side are the monitoring
and mitigation framework. The workflow execution engine

Figure 5. Complete runtime framework with integrated workflow, monitoring and mitigation integra-
tion

and the global controller run on the cluster head node, re-
gional managers are assigned to each rack head node, while
local managers run on remaining worker nodes.

The workflow execution engine provides an interface for
submitting concrete workflows. Multiple concrete work-
flows can be handled by multiple execution engine threads.

As participants are declared ready to run based on the de-
pendencies, the workflow engine contacts the global man-
ager. Information regarding the participant conditions along
with a unique participant and the concrete workflow iden-
tifier are used to start participant specific monitors in the
worker nodes.

At participant start up the pre conditions are checked at
the global manager level. Any violation on the pre con-
ditions results into a message back to the workflow en-
gine informing the violation. The pre conditions, such as
H(n, t) > 0, refer to general monitors constantly running
on worker nodes.

When participants are submitted for execution all invari-
ant condition result in the the activation of participant spe-
cific monitors. An example of invariant condition is the
availability of the dCache pool manager:H(pm, t) > 0.
When a condition is violated an event is sent to the work-
flow execution engine. Action to avoid fault propagation is
then taken, for example by restarting the same participant
on a different set of nodes.

Similarly when a participant completes any post condi-
tions are evaluated. Usually post conditions are workflow
related, for example to make sure expected output files have

been created. A specific example is discussed in the follow-
ing section.

5.1 Example of a 2-point Analysis Work-
flow

One of the common LQCD workflows is the analysis
campaign. These are coordinated set of calculations aimed
at determining a set of specific physics quantities. For ex-
ample, predicting the mass and decay constant of a spe-
cific particle determined by computing ensemble averaged
2-point functions. A typical campaign consists of taking an
ensemble of vacuum gauge configurations and using them
to create intermediate data products (e.g. quark propaga-
tors) and computing mesonn-point functions for every con-
figuration in the ensemble. An important feature of such a
campaign is that the intermediate calculations done for each
configuration are independent of those done for other con-
figurations.

The sample workflow depicted in Fig. 4 is the represen-
tation of an analysis campaign for a single configuration file
of an ensemble. The complete workflow consists ofN in-
dependent instances of the concrete workflow in the figure.
TheN outputs form the final campaign output are later ana-
lyzed. An implicit behavior of analysis campaign is that the
number of participants and outputs depend on the input pa-
rameters. For example the number of participants HQ gen-
erating heavy quark propagators is derived from the amount
of certain physics parameters (kappa and wsrc).

Figure 6. Sequence diagram depicting a pre
condition violation.

dCache failure scenario: the first participant on the 2-
point concrete workflow is getFile. This participant is re-
sponsible for fetching the gauge configuration used as input
for the LQ and HQ participants. A pre condition of getFile
is that the dCache pool manager (pm) must be available,
thereforeH(pm, t) > 0 is required. In the case of condition
violation as show in Fig. 6, the workflow engine is informed
about the unavailability of dCache and an action must be
taken. One of the options is to reschedule the getFile par-
ticipant after a∆time. Other actions may be available for
the same failure and could be taken by the mitigation frame-
work if a reflex engine is present on thepm node.

Disk space failure scenario: the second level of partici-
pants on the 2-point concrete workflow is composed by HQ
and LQ instances. It is known that HQ produces a large out-
put file in the order of a few GB. A natural pre condition is
to check if the disk space available meets the requirements:
D(n,′ DISK′) > 10000.

Before the participant starts running the local disk sensor
is checked to make sure enough space is available, accord-
ing to the first step in Fig. 7. If the condition is violated an
event is created. In this case the mitigation action can be
provided by the local reflex engine, for example by deleting
files from the temporary disk area. In case the action does
not succeed, an action by the workflow engine is requested.

Infiniband failure scenario: most LQCD participants
are parallel jobs that heavily use a dedicated infiniband net-
work for exchanging data on every algorithm iteration. It is
essential that the network remains available throughout the
participant execution time. This need can be expressed as an
invariant condition of the type:I(n, t) > 0, with possible
values of{0, 1}.

If the invariant condition is violated, first the local fault
mitigation is enabled, as in Fig. 7. If the violation persists,
an event is sent to the workflow execution engine. Similarly
to Fig. 6, the action resulting from the infiniband failure is
to have the whole participant rescheduled.

Figure 7. Sequence diagram depicting a pre
condition violation triggering a local fault
mitigation.

6 Conclusions and Future Work

In this paper we presented a framework for reliably ex-
ecute scientific workflows. Essential run time information
is constantly verified by the monitoring framework, while
conditions pertinent to the running workflow are enabled
only during execution time. Additionally, the conditions are
specified at the participant granularity, avoiding as much as
possible extra monitoring and consequent use of computing
resources otherwise available for the scientific applications.
We have developed a prototype of the proposed architecture
used to demonstate the system feasibility for LQCD work-
flows.

Many workflow systems currently lack fault tolerant fea-
tures, which is one of the top priorities for large scale long
time running workflows. Hardware and software faults are
common and need to be addressed at both workflow and
node levels. This work fills the gap between monitoring
and workflow systems, allowing proactive behavior on the
presence of failures.

We plan to add missing features of the prototype, such as
completing the set of conditions, distinction between relia-
bility and workflow related conditions, and replacement of
the current workflow engine. Further tests are planned on
a virtual environment where failure scenarios can be simu-
lated and repeated.

7 Acknowledgments

This work was supported in part by Fermi National Ac-
celerator Laboratory, operated by Fermi Research Alliance,
LLC under contract No. DE-AC02-07CH11359 with the
United States Department of Energy (DoE), and by DoE
SciDAC program under the contract No. DOE DE-FC02-
06 ER41442.

References

[1] S. Abdelwahed, G. Karsai, and G. Biswas. Notions of di-
agnosability for timed failure propagation graphs. InPro-
ceeding of IEEE Systems Readiness Technology Conference,
AUTOTESTCON, 2006.

[2] R. Alur and D. L. Dill. A theory of timed automata.Theo-
retical Computer Science, 126(2):183–235, 1994.

[3] G. Behrmann, P. Fuhrmann, M. Grønager, and J. Kleist. A
distributed storage system with dcache.Journal of Physics:
Conference Series, 119(6):062014 (10pp), 2008.

[4] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty,
and G. Karsai. Towards a verifiable real-time, autonomic,
fault mitigation framework for large scale real-time systems.
Innovations in Systems and Software Engineering, 3:33–52,
March 2007.

[5] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty,
and G. Karsai. Towards a model-based autonomic reliability
framework for computing clusters. InEASE ’08, pages 75–
85, 2008.

[6] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlip-
nig, J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and
M. Wieczorek. Askalon: A grid application development
and computing environment. InGRID ’05: Proceedings of
the 6th IEEE/ACM International Workshop on Grid Com-
puting, pages 122–131, Washington, DC, USA, 2005. IEEE
Computer Society.

[7] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid
workflow applications with agwl: an abstract grid workflow
language.Cluster Computing and the Grid, IEEE Interna-
tional Symposium on, 2:676–685, 2005.

[8] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real time systems.Information and
Computation, 111(2):193–244, 1994.

[9] M. Huth and M. Ryan.Logic in Computer Science: Mod-
elling and Reasoning about Systems. Cambridge University
press, 2 edition, 2000.

[10] G. Malewicz, I. Foster, A. L. Rosenberg, and M. Wilde. A
tool for prioritizing dagman jobs and its evaluation.Journal
of Grid Computing, 5(2):197–212, 2007.

[11] L. Piccoli, J. B. Kowalkowski, J. N. Simone, X.-H. Sun, D. J.
Holmgren, N. Seenu, A. G. Singh, and H. Jin. Lattice qcd
workflows: A case study. InSWBES ’08, Indianapolis, IN,
USA, 2008.

[12] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. V. Laszewski,
I. Raicu, T. Stef-praun, and M. Wilde. Swift: Fast, reliable,
loosely coupled parallel computation.services, 00:199–206,
2007.

